题目内容
如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?
- A.一组对边平行,另一组对边相等的四边形是平行四边形
- B.有一组对边平行的四边形是梯形
- C.一组对边相等,一组对角相等的四边形是平行四边形
- D.对角线相等的四边形是矩形
C
分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.
解答:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;
B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;
C.一组对边相等,一组对角相等的四边形是平行四边形,
∵△ABC是等腰三角形,
∴AB=AC,∠B=∠C,
∵DE=AC,AD=AD,∠ADE=∠DAC,
即
,
∴△ADE≌△DAC,
∴∠E=∠C,
∴∠B=∠E,AB=DE,
但是四边形ABDE不是平行四边形,
故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,
故此选项正确;
D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;
故选:C.
点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.
分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.
解答:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;
B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;
C.一组对边相等,一组对角相等的四边形是平行四边形,
∵△ABC是等腰三角形,
∴AB=AC,∠B=∠C,
∵DE=AC,AD=AD,∠ADE=∠DAC,
即
∴△ADE≌△DAC,
∴∠E=∠C,
∴∠B=∠E,AB=DE,
但是四边形ABDE不是平行四边形,
故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,
故此选项正确;
D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;
故选:C.
点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.
练习册系列答案
相关题目