题目内容
如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状( )
A. 直角三角形 B. 等腰三角形 C. 锐角三角形 D. 钝角三角形
![]()
A
详细解答:在△ABP与△CBQ中,
∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°
∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ
∴△ABP≌△CBQ ∴AP=CQ
由PA∶PB∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a
连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°
∴△PBQ为等边三角形 ∴PQ=4a
于是在△PQC中,![]()
∴△PQC是直角三角形
练习册系列答案
相关题目