题目内容
如图,以BC为直径的圆0交∆CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2 =AF.AC.
【小题1】求△ANM?△ENM;
【小题2】求证:FB是圆O的切线
【小题3】证明四边形AMEN是菱形.![]()
【小题1】证明:因为BC是圆0的直径,
所以:∠BAC=900 (1分)
又EM⊥BC,BM平分∠ABC,
所以:AM="ME." ∠AMN=∠EMN
又MN=MN
所以:∆ANM?∆ENM
【小题2】因为:AB2=AF?AC,![]()
![]()
又∠ABF=∠C
所以:∆ABF~∆ACB (4分)
所以:∠ABF=∠C
又∠FBC="∠ABC+∠FBA=" 900,
.’.FB是圆O的切线
【小题3】解:由(1)得AN="EN,AM=EM," ∠AMN=∠EMN
又:AN//ME
所以:∠ANM=∠EMN (7分)
所以:∠AMN=∠ANM (8分)
所以:AN=AM
AM=ME+EN=AN
所以:四边形AMEN是菱形 (10分)
解析
练习册系列答案
相关题目