题目内容
解方程:3x2-2=6x分析:首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.
解答:解:移项,得3x2-6x=2,
二次项系数化为1,得x2-2x=
,
配方(x-1)2=
,
由此可得x1=1-
,x2=1+
.
二次项系数化为1,得x2-2x=
| 2 |
| 3 |
配方(x-1)2=
| 5 |
| 3 |
由此可得x1=1-
| ||
| 3 |
| ||
| 3 |
点评:配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目