题目内容
不等式组的解集是( )
A. ﹣1≤x≤4 B. x<﹣1或x≥4 C. ﹣1<x<4 D. ﹣1<x≤4
如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点。
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E. F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C. P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。
如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )
A. 60° B. 67.5° C. 75° D. 54°
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是 _____.
用配方法解方程2x2﹣x﹣1=0,变形结果正确的是( )
A. (x﹣)2= B. (x﹣)2= C. (x﹣)2= D. (x﹣)2=
如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积从________变化到________.
发现来源于探究。小亮进行数学探究活动,作边长为a的正方形ABCD和边长边b的正方形AEFG(a>b),开始时点E在AB上,如图1,将正方形AEFG绕点A逆时针方向旋转。
(1)如图2,小亮将正方形AEFG绕点A顺时针方向旋转,连接BE、DG,请证明:△ADG≌△ABE;
(2)如图3,小亮将正方形AEFG绕点A顺时针方向旋转,连接BE、DG,当点G恰好落在线段BE上,且a=3,b=2时,请你帮他求此时DG的长。
(3)如图4,小亮旋转正方形AEFG,当点E在DA的延长线上时,连接BF、DF,若FG平分∠BFD,请你帮他求a:b的值.
关于x的方程的解是正数,则a的取值范围是 ( )
A. B. C. D.