题目内容
(2010•江北区模拟)在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当
【答案】分析:如果在黄金矩形ABCD的较长边AB上截取AE=BC,另一边DC上截取DF=BC,连接EF,那么可以证明四边形AEFD是正方形;然后证明矩形BCFE的宽与长的比是黄金分割比即可.
解答:
证明:在AB上截取AE=BC,DF=BC,连接EF.
∵AE=BC,DF=BC,
∴AE=DF=BC=AD,
又∵∠ADF=90°,
∴四边形AEFD是正方形.
BE=
,
∴
,
∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.
∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.
点评:此题考查了黄金分割比的意义.本题中将已知黄金矩形ABCD分割成一个以较短边AD为边的正方形和一个较小矩形是解决问题的关键.
解答:
∵AE=BC,DF=BC,
∴AE=DF=BC=AD,
又∵∠ADF=90°,
∴四边形AEFD是正方形.
BE=
∴
∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.
∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.
点评:此题考查了黄金分割比的意义.本题中将已知黄金矩形ABCD分割成一个以较短边AD为边的正方形和一个较小矩形是解决问题的关键.
练习册系列答案
相关题目
(2010•江北区模拟)阅读下列方法:为了找出序列3、8、15、24、35、48、…的规律,我们有一种“因式分解法”.如下
表:

因此,我们得到第n项是n(n+2),请你利用上述方法,说出序列:0、5、12、21、32、45、…的第n项是 .
表:
| 项 | 1 | 2 | 3 | 4 | 5 | 6 | … | n |
| 值 | 3 | 8 | 15 | 24 | 35 | 48 | … |
因此,我们得到第n项是n(n+2),请你利用上述方法,说出序列:0、5、12、21、32、45、…的第n项是 .