题目内容
a6÷a2=_____.
如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于( )
A. 30 B. 24 C. 15 D. 10
不等式2x+5<3的解集是_____.
先化简,再求值:,其中.
请写出一个图象的对称轴为y轴,开口向下,且经过点(1,﹣2)的二次函数解析式,这个二次函数的解析式可以是_____.
如果关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k的取值范围是( )
A. k<1 B. k<1且k≠0 C. k>1 D. k>1且k≠0.
如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,以大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,得四边形ABEF.
求证:四边形ABEF是菱形.
如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于( )
A. B. C. D.