题目内容

26、如图,在△ABC中,AD是高线,点M在AD上,且∠BAD=∠DCM,求证:CM⊥AB.
分析:要证明CM⊥AB,只要延长CM交AB与N,证出∠ANM=90°即可.
解答:证明:延长CM交AB与N.
∵在△ABC中,AD是高线,
∴∠ADC=90°,
在△AMN和△CDM中,∠BAD=∠DCM,∠AMN=∠CMD,
根据三角形内角和定理得到:∠ANM=∠ADC=90°,
∴CM⊥AB.
点评:证明垂直的方法一般是根据垂直的定义,转化为证直角的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网