题目内容

如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

【答案】分析:(1)根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证.
(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证
解答:(1)证明:∵CE平分∠ACB,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,(2分)
同理,FO=CO,(3分)
∴EO=FO.(4分)

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.(5分)
∵EO=FO,点O是AC的中点.
∴四边形AECF是平行四边形,(6分)
∵CF平分∠BCA的外角,
∴∠4=∠5,
又∵∠1=∠2,
∴∠2+∠4=×180°=90°.
即∠ECF=90度,(7分)
∴四边形AECF是矩形.(8分)
点评:本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网