题目内容
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc<0;②b2-4ac>0;③4b+c<0;④若B(-
,y1),C(-
,y2)为函数图象上的两点,则y1>y2;⑤当-3≤x≤1时,y≥0,其中正确的结论是______.(填序号)
![]()
【答案】②③⑤
【解析】由图象可知,a<0,b<0,c>0,
∴abc>0,故①错误.
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故②正确.
∵抛物线对称轴为x=-1,与x轴交于A(-3,0),
∴抛物线与x轴的另一个交点为(1,0),
∴a+b+c=0,-
=-1,
∴b=2a,c=-3a,
∴4b+c=8a-3a=5a<0,故③正确.
∵B(-
,y1)、C(-
,y2)为函数图象上的两点,
又点C离对称轴近,
∴y1,<y2,故④错误,
由图象可知,-3≤x≤1时,y≥0,故⑤正确.
∴②③⑤正确,
故答案是:②③⑤.
练习册系列答案
相关题目