题目内容
(2011•潼南县)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
:解:(1)由已知得:A(﹣1,0),B(4,5),
∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5),
∴
,
解得:b=﹣2,c=﹣3;
(2)如图:∵直线AB经过点A(﹣1,0),B(4,5),
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2﹣2x﹣3,
∴设点E(t,t+1),则F(t,t2﹣2t﹣3),
∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣
)2+
,
∴当t=
时,EF的最大值为
,
∴点E的坐标为(
,
);
(3)①如图:顺次连接点E、B、F、D得四边形EBFD.
可求出点F的坐标(
,
),点D的坐标为(1,﹣4)
S四边形EBFD=S△BEF+S△DEF=
×
×(4﹣
)+
×
×(
﹣1)=
;
②如图:
ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3)
则有:m2﹣2m﹣2=
,
解得:m1=
,m2=
,
∴P1(
,
),P2(
,
),
ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3)
则有:n2﹣2n﹣2=﹣
,
解得:n1=
,n2=
(与点F重合,舍去),
∴P3(
,
),
综上所述:所有点P的坐标:P1(
,
),P2(
,
),P3(
,
)能使△EFP组成以EF为直角边的直角三角形.
解析:
:(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(﹣1,0)B(4,5),然后利用待定系数法即可求得b,c的值;
(2)由直线AB经过点A(﹣1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2﹣2x﹣3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标;
(3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(
,
),点D的坐标为(1,﹣4)由S四边形EBFD=S△BEF+S△DEF即可求得;
②过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),可得m2﹣2m﹣2=
,即可求得点P的坐标,又由过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),可得n2﹣2n﹣2=﹣
,求得点P的坐标,则可得使△EFP是以EF为直角边的直角三角形的P的坐标.
∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5),
∴
解得:b=﹣2,c=﹣3;
(2)如图:∵直线AB经过点A(﹣1,0),B(4,5),
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2﹣2x﹣3,
∴设点E(t,t+1),则F(t,t2﹣2t﹣3),
∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣
∴当t=
∴点E的坐标为(
(3)①如图:顺次连接点E、B、F、D得四边形EBFD.
可求出点F的坐标(
S四边形EBFD=S△BEF+S△DEF=
ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3)
则有:m2﹣2m﹣2=
解得:m1=
∴P1(
ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3)
则有:n2﹣2n﹣2=﹣
解得:n1=
∴P3(
综上所述:所有点P的坐标:P1(
:(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(﹣1,0)B(4,5),然后利用待定系数法即可求得b,c的值;
(2)由直线AB经过点A(﹣1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2﹣2x﹣3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标;
(3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(
②过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),可得m2﹣2m﹣2=
练习册系列答案
相关题目
(2011•潼南县)计算3a•2a的结果是( )
| A.6a | B.6a2 |
| C.5a | D.5a2 |
(2011•潼南县)计算3a•2a的结果是( )
| A.6a | B.6a2 |
| C.5a | D.5a2 |