题目内容
如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 .
如图所示的几何体,它的左视图与俯视图都正确的是( )
A. B. C. D.
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )
A. (3,-2) B. (2,3) C. (-2,-3) D. (2,-3)
如图,在?ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点.连接MF,则△AOE与△BMF的面积比为________.
若反比例函数y=的图象经过点(1,-6),则k的值为________.
有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。运算式如下:(1) ,(2) ,(3) 。
另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24。
如图,位于第二象限的点E在反比例函数y=的图象上,点F在 x轴的负半轴上,O是坐标原点,若FO⊥EF,△EOF的面积等于2,则k的值是( )
A. 4 B. -4 C. 2 D. -2