ÌâÄ¿ÄÚÈÝ
£¨6·Ö£©Àà±Èѧϰ£ºÒ»¶¯µãÑØ×ÅÊýÖáÏòÓÒÆ½ÒÆ3¸öµ¥Î»£¬ÔÙÏò×óÆ½ÒÆ2¸öµ¥Î»£¬Ï൱ÓÚÏòÓÒÆ½ÒÆ1¸öµ¥Î»£®ÓÃʵÊý¼Ó·¨±íʾΪ 3+£¨
£©=1£®Èô×ø±êÆ½ÃæÉϵĵã×÷ÈçÏÂÆ½ÒÆ£ºÑØxÖá·½ÏòÆ½ÒÆµÄÊýÁ¿Îªa£¨ÏòÓÒΪÕý£¬Ïò×óΪ¸º£¬Æ½ÒÆ
¸öµ¥Î»£©£¬ÑØyÖá·½ÏòÆ½ÒÆµÄÊýÁ¿Îªb£¨ÏòÉÏΪÕý£¬ÏòÏÂΪ¸º£¬Æ½ÒÆ
¸öµ¥Î»£©£¬Ôò°ÑÓÐÐòÊý¶Ô{a£¬b}½Ð×öÕâÒ»Æ½ÒÆµÄ¡°Æ½ÒÆÁ¿¡±£»¡°Æ½ÒÆÁ¿¡±{a£¬b}Óë¡°Æ½ÒÆÁ¿¡±{c£¬d}µÄ¼Ó·¨ÔËËã·¨ÔòΪ
£®
![]()
½â¾öÎÊÌ⣺
1.£¨1£©¼ÆË㣺{3£¬1}+{1£¬2}£»{1£¬2}+{3£¬1}£®
2.£¨2£©¢Ù¶¯µãP´Ó×ø±êÔµãO³ö·¢£¬ÏȰ´ÕÕ¡°Æ½ÒÆÁ¿¡±{3£¬1}Æ½ÒÆµ½A£¬ÔÙ°´ÕÕ¡°Æ½ÒÆÁ¿¡±
{1£¬2}Æ½ÒÆµ½B£»ÈôÏȰѶ¯µãP°´ÕÕ¡°Æ½ÒÆÁ¿¡±{1£¬2}Æ½ÒÆµ½C£¬ÔÙ°´ÕÕ¡°Æ½ÒÆÁ¿¡±
{3£¬1}Æ½ÒÆ£¬×îºóµÄλÖû¹ÊǵãBÂð? ÔÚͼ1Öл³öËıßÐÎOABC.
¢ÚÖ¤Ã÷ËıßÐÎOABCÊÇÆ½ÐÐËıßÐÎ.
3.£¨3£©Èçͼ2£¬Ò»ËÒ´¬´ÓÂëÍ·O³ö·¢£¬ÏȺ½Ðе½ºþÐĵºÂëÍ·P£¨2£¬3£©£¬ÔÙ´ÓÂëÍ·Pº½Ðе½ÂëÍ·Q£¨5£¬5£©£¬×îºó»Øµ½³ö·¢µãO. ÇëÓá°Æ½ÒÆÁ¿¡±¼Ó·¨Ëãʽ±íʾËüµÄº½Ðйý³Ì£®
1.£¨1£©{3£¬1}+{1£¬2}={4£¬3}£®
{1£¬2}+{3£¬1}={4£¬3}£®
2.£¨2£©¢Ù»Í¼ ![]()
×îºóµÄλÖÃÈÔÊÇB
¢Ú Ö¤Ã÷£ºÓÉ¢ÙÖª£¬A£¨3£¬1£©£¬B(4£¬3)£¬C£¨1£¬2£©
¡àOC=AB=
=
£¬OA=BC=
=
£¬
¡àËıßÐÎOABCÊÇÆ½ÐÐËıßÐÎ
3.£¨3£©{2£¬3}+{3£¬2}+{-5£¬-5}={0,0}£®
½âÎö:ÂÔ