题目内容
请先阅读下列一组内容,然后解答问题:
因为:
=1-
,
=
-
,
=
-
,…,
=
-
,
所以:
+
+
+…+
=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
+
-
+
-
+…+
-
=1-
=
.
计算:(1)
+
+
+…+
(2)
+
+
+…+
.
因为:
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9×10 |
| 1 |
| 9 |
| 1 |
| 10 |
所以:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 9×10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
| 9 |
| 10 |
计算:(1)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2013×2014 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 49×51 |
分析:观察阅读材料中的运算过程,得到拆项规律,将所求式子变形,计算即可得到结果.
解答:解:(1)原式=1-
+
-
+
-
+…+
-
=1-
=
;
(2)原式=
×(1-
+
-
+
-
+…+
-
)=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2013 |
| 1 |
| 2014 |
| 1 |
| 2014 |
| 2013 |
| 2014 |
(2)原式=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 49 |
| 1 |
| 51 |
| 25 |
| 51 |
点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
练习册系列答案
相关题目