题目内容

10、如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是(  )
分析:正六边形的每个内角都等于120°,它的一半是60°,它的邻补角也是60°,可知上下的小三角形都是等边三角形,依此可知这个图形(阴影部分)外轮廓线的周长.
解答:解:∵个正六边形的一边恰在另一个正六边形的对角线上,
∴它的一半是60°,它的邻补角也是60°,
∴上面的小三角形是等边三角形,
∴上面的(阴影部分)外轮廓线的两小段和为1,
同理可知下面的(阴影部分)外轮廓线的两小段和为1,
故这个图形(阴影部分)外轮廓线的周长是8.
故选B.
点评:本题考查多边形的内角和定理,同时考查了等边三角形的判定和性质,得出上、下面的(阴影部分)外轮廓线的两小段和分别为1是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网