题目内容
【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF. ![]()
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=
,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DFGF.
【答案】
(1)证明:∵OA=OB,
∴∠OAB=∠OBA,
∵OA⊥CD,
∴∠OAB+∠AGC=90°,
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,
即∠OBF=90°,
∴OB⊥FB,
∵AB是⊙O的弦,
∴点B在⊙O上,
∴BF是⊙O的切线
(2)解:∵AC∥BF,
∴∠ACF=∠F,
∵CD=a,OA⊥CD,
∴CE=
CD=
a,
∵tanF=
,
∴tan∠ACF=
=
,
即
=
,
解得AE=
a,
连接OC,设圆的半径为r,则OE=r﹣
a,
在Rt△OCE中,CE2+OE2=OC2,
即(
a)2+(r﹣
a)2=r2,
解得r=
a;
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F,
又∵∠FGB=∠BGF,
∴△BDG∽△FBG,
∴
=
,
即GB2=DGGF,
∴GF2﹣GB2=GF2﹣DGGF=GF(GF﹣DG)=GFDF,
即GF2﹣GB2=DFGF.
![]()
【解析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=
CD=
a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r;(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2 , 然后代入等式左边整理即可得证.