题目内容
【题目】如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行2000米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果保留根号)
![]()
【答案】1600+1000
米.
【解析】
试题分析:首先作CE⊥AB于E,依题意,AB=1464,∠EAC=30°,∠CBE=45°,设CD=x,则BE=x,进而利用正切函数的定义求出x即可.
解:过点C作CE⊥AB的延长线于E,依题意得:AB=2000,∠EAC=30°,∠CBE=45°,
![]()
设CE=x,则BE=x,在Rt△ACE中,
tan30°=
=
=
,
即3x=2000
+
x,
解得:x=1000(
+1)=1000
+1000,
∴1000
+1000+600=(1600+1000
)米
答:黑匣子C离海面约1600+1000
米.
练习册系列答案
相关题目