题目内容

对正方形ABCD进行分割,如图1,其中EF分别是BCCD的中点,MNG分别是OBODEF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”。若△GOM的面积为1,则“飞机”的面积为     

[解析]连接AC,四边形ABCD是正方形,

AC⊥BD,E、F分别BC、CD的中

点,EF//BD,AC⊥EF,CF=CE,△EFC是等腰直角三角形,直线AC是△EFC底边上的高所在直线,根据等腰三角形“三线合一”,AC必过EF的中点G,点A、O、G和C在同一条直线上,OC=OB=OD,OC⊥OB,FG是△DCO的中位线,OG=CG= OC, M、N分别是OB、OD的中点,OM=BM= OB,ON=DN= OD,OG=OM=BM=ON=DN= BD,等腰直角三角形GOM的面积为1,OM•OG=OM2=1,OM=,BD=4 OM=4,2AD2= BD2=32,AD=4,图2中飞机面积图1中多边形ABEFD的面积,飞机面积=正方形ABCD面积-三角形CEF面积=16-2=14。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网