题目内容

如图,已知?ABCD中,AE⊥BC于E,AF⊥DC于F,若AB=3,AD=4,BE=2.
(1)求证:△ABE∽△ADF;    
(2)求CF的长.

(1)证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,DC=AB=3,
又∵AE⊥BC,AF⊥DC,
∴∠BEA=∠DFA=90°,
∴△ABE∽△ADF;

(2)解:∵△ABE∽△ADF,

∵AB=3,AD=4,BE=2,
即DF==
∴CF=CD-DF=3-=
分析:(1)由四边形ABCD是平行四边形,可得∠B=∠D,又由AE⊥BC于E,AF⊥DC于F,可得∠BEA=∠DFA=90°,根据有两角对应相等的三角形相似,即可证得:△ABE∽△ADF; 
(2)由△ABE∽△ADF,根据相似三角形的对应边成比例,易求得DF的长,继而求得CF的长.
点评:此题考查了相似三角形的判定与性质与平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网