题目内容
如图,已知AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且 CE=CF.
(1)求证:CE是⊙O的切线;
(2)若AD=CD=6,求四边形ABCD的面积.
![]()
证明:(1)连结OC.
∵CF⊥AB ,CE⊥AD,且CE=CF
∴∠CAE=∠CAB
∵ OC=OA
∴ ∠CAB=∠OCA
∴∠CAE=∠OCA
∴∠OCA+∠ECA=∠CAE+∠ECA=90°
又∵OC是⊙O的半径
∴CE是⊙O的切线 、
(2)∵AD=CD
∴∠DAC=∠DCA=∠CAB
∴DC//AB
∵∠CAE=∠OCA
∴OC//AD
∴四边形AOCD是平行四边形
∴OC=AD=6,AB=12 ………
∵∠CAE=∠CAB
∴弧CD=弧CB
∴CD=CB=6
∴△OCB是等边三角形 ………
∴
∴S四边形ABCD=
练习册系列答案
相关题目