题目内容
解方程:
某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.
当x取何整数时,分式的值是整数?
反比例函数y=的图象在( )
A. 第一,三象限 B. 第二,四象限 C. 第一,二象限 D. 第三,四象限
)我校的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至20℃时自动开机加热,重复上述自动程序.若在水温为20℃时,接通电源后,水温y(℃)和时间(min)的关系如图,
(1) 分别求出直线及双曲线的解析式.
(2)求饮水机接通电源到下一次开机的间隔时间.
(3)在(2)中的时间段内,要想喝到超过50℃的水,有多长时间?
如图,点P是反比例函数(x<0)图像的一点,PA垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为__________.
已知反比例函数,下列结论不正确的是( )
A. 图像经过点(1,1) B. 图像在第一、三象限
C. 当x>1时,0<y<1 D. 当x<0时, 随着的增大而增大
如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为( )
A. B. C. D.
如图,在平面直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC.点E是y轴上任意一点记点E为(0,n).
(1)求直线BC的关系式;
(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的顶点F落在△ABC的边上?若存在,求出所有的n值并直接写出此时正方形DEFG与△ABC重叠部分的面积;若不存在,请说明理由.