题目内容
函数y=中,自变量x的取值范围是 .
如图,四边形ABCD是矩形,AB=6,BC=8,点E在线段AD上,把△ABE沿直线BE翻折,点A落在点A′,EA′的延长线交BC于点F,
(1)如图(1),求证:FE=FB;
(2)当点E在边AD上移动时,点A′的位置也随之变化,
①当点A′恰好落在线段BD上时,如图(2),求AE的长;
②在运动变化过程中,设AE=x,CF=y,求y与x的函数关系式,试判断EF能否平分矩形ABCD的面积?若能,求出x的值;若不能,则说明理由;
(3)当点E在边AD上运动时,点D与点A′之间的距离也随之变化,请直接写出点D与点A′之间距离的变化范围.
如图,在△ABC中,D、E分别为AB、AC的中点,连接DE,若S△ADE=2,则四边形BDEC的面积为 .
某特色农产品在市场上颇具竞争力,上市时,赵经理按市场价格10元/千克在某地收购了2000千克农产品存放入冷库中,据预测,农产品的市场价格每天每千克将上涨0.5元,但冷库存放这种农产品时每天需要支出各种费用合计340元,而且该产品在冷库中最多保存110天,同时,平均每天有6千克的产品损坏不能出售.
(1)若存放x天后,将这批农产品一次性出售,销售总金额为y元,直接写出y与x之间的函数关系式为 (1≤x≤110,x为整数).
(2)赵经理想获得利润22500元,需将这批农产品存放多少天后出售?(利润=销售总额﹣收购成本﹣各种费用)
(3)赵经理将这批农产品存放多少天后出售可获得最大利润?最大利润是多少?
(1)计算:;
(2)化简:(a﹣b)2+b(2a+b).
写出一个比﹣3大的无理数是 .
下列运算正确的是( )
A.a3+a4=a7 B.2a3a4=2a7 C.2(a4)3=2a7 D.a8÷a4=a2
如果且x+y+z=5,那么x+y﹣z= .
某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价;
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?