题目内容
计算:x2y•(xn-1yn+1-xn-1yn-1+xnyn)=
xn+1yn+2-xn+1yn+xn+2yn+1
xn+1yn+2-xn+1yn+xn+2yn+1
.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.
解答:解:x2y•(xn-1yn+1-xn-1yn-1+xnyn)=xn+1yn+2-xn+1yn+xn+2yn+1.
故答案为:xn+1yn+2-xn+1yn+xn+2yn+1.
故答案为:xn+1yn+2-xn+1yn+xn+2yn+1.
点评:本题考查了单项式与多项式相乘,掌握运算法则是解题的关键,先用单项式乘多项式的每一项,再把所得的积相加,计算时要注意符号的处理.
练习册系列答案
相关题目