题目内容
如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为 .
已知,如图,点A为⊙O上的一点.
(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC.(保留作图痕迹并标出B、C);
(2)若⊙O半径为10,则三角形ABC的面积为 .
已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任意一点,延长PD到E,使DE=2PD,再以PE、PC为边作平行四边形PCQE,求对角线PQ的最小值为______________.
-2的倒数是 ( )
A. - B. C. ±2 D. 2
学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
分解因式:2x2-8=_______.
若关于的方程的解为,则的值为( )
A. -5 B. 5 C. -7 D. 7
若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为____cm2.
如图,AB=DE,∠B=∠E,使得△ABC≌△DEC,请你添加一个适当的条件_____(填一个即可).