题目内容
在下列四个新能源汽车车标的设计图中,属于中心对称图形的是 ( )
A. B.
C. D.
口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是 .
求:(1)口袋里黄球的个数;
(2)任意摸出一个球是红色的概率.
下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序( ).
①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)
②向锥形瓶中匀速注水(水面的高度与注水时间的关系)
③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)
④一杯越来越凉的水(水温与时间的关系)
A. ①②④③ B. ③④②①
C. ①④②③ D. ③②④①
如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.
正十边形的每一个内角的度数为()
A. 120° B. 135°
C. 140° D. 144°
如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当MN=2BN时,求α的度数;
(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.
对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则( )
A. 甲的结果正确
B. 乙的结果正确
C. 甲、乙的结果合在一起才正确
D. 甲、乙的结果合在一起也不正确
如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A. B. C. D.