题目内容

如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为           

解析试题分析:解:过F作FH∥AB交CE于H,
∵FH∥AB,
∴∠HFD=∠EBD,
∵D为BF的中点,
∴BD=DF,
在△BED和△FHD中

∴△BED≌△FHD(SAS),
∴FH=BE,
∵FH∥AB,
∴△CFH∽△CAE,
∴HF:AE=CF:AC,
∵AC=AB,CF=AE,
∴AF=BE=HF.
设AC=AB=1,AE=x,则=即为
解得x=,AF=
∴AE:AF=

考点:相似三角形的判定与性质.
点评:本题主要考查三角形全等的判定和性质、三角形相似的判定和性质及二元一次方程的解法,正确作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网