题目内容

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:
______; 慢车的速度为______,快车的速度为______;
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.
(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?

【答案】分析:(1)根据图象即可看出甲乙两地之间的距离,根据图可知:慢车行驶的时间是12h、快车行驶的时间是6h,根据速度公式求出速度即可;
(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,根据所显示的数据求出B和C的坐标,代入求出即可;
(3)分为两种情况:①设第二列快车出发ah,与慢车相距200km,根据题意得出方程4×80+80a-200=160a,求出即可;
②第二列开车追上慢车以后再超过慢车200km,设第二列快车出发ah,与慢车相距200km,则160a-80a=4×80+200,求出即可;
(4)设第三列快车在慢车出发t h后出发.得出不等式t+,求出不等式的解集即可.
解答:解:(1)由图象可知,甲、乙两地之间的距离是960km; 
图中点C的实际意义是:当慢车行驶6 h时,快车到达乙地;
慢车的速度是:960km÷12h=80km/h;
快车的速度是:960km÷6h=160km/h;
故答案为:960,当慢车行驶6 h时,快车到达乙地,80km/h,160km/h;

(2)解:根据题意,两车行驶960km相遇,所用时间(h),
所以点B的坐标为(4,0),两小时两车相距2×(160+80)=480(km),
所以点C的坐标为(6,480).
设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,480)代入得
解得
所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6. 

(3)解:分为两种情况:①设第二列快车出发ah,与慢车相距200km,
则4×80+80a-200=160a,
解得:a=1.5,
即第二列快车出发1.5h,与慢车相距200km;
②第二列开车追上慢车以后再超过慢车200km.
设第二列快车出发ah,与慢车相距200km,
则160a-80a=4×80+200,得a=6.5>6,(因为快车到达甲地仅需6小时,所以a=6.5舍去)
综合这两种情况得出:第二列快车出发1.5h,与慢车相距200km.

(4)解:设第三列快车在慢车出发t h后出发.
则t+
解得:t≤6.
第三列快车比慢车最多晚出发6小时.
点评:本题考查了一次函数的应用,解此题的关键是能根据题意得出关系式,即把实际问题转化成数学式子来表示出来,题目综合比较强,是一道有一定难度的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网