题目内容
设x1,x2是方程2x2+4x-3=0的两个根,求下列各式:
(1)(x1-x2)2;
(2)
+
;
(3)x12+x22.
(1)(x1-x2)2;
(2)
| 2 |
| x1 |
| 2 |
| x2 |
(3)x12+x22.
分析:(1)利用配方法将(x1-x2)2转化为两根之和与两根之积的形式,再应用根与系数的关系求出(x1-x2)2的值;
(2)将
+
通分,然后利用配方法将原式转化为两根之积与两根之和的形式,再应用根与系数的关系,求出式子的值;
(3)利用配方法将x12+x22转化为两根之和与两根之积的形式,再应用根与系数的关系求出x12+x22的值.
(2)将
| 2 |
| x1 |
| 2 |
| x2 |
(3)利用配方法将x12+x22转化为两根之和与两根之积的形式,再应用根与系数的关系求出x12+x22的值.
解答:解:易求2x2+4x-3=0的两根之和为x1+x2=-2;两根之积为x1•x2=-
;
(1)(x1-x2)2
=
-2x1x2+
=
+2x1x2+
-4x1x2
=(x1+x2)2-4x1x2
=(-2)2-4×(-
)
=4+6
=10.
(2)
+
=
=
=
=
=
=-
.
(3)x12+x22
=
+2x1x2+
-2x1x2
=(x1+x2)2-2x1x2
=(-2)2-2×(-
)
=7.
| 3 |
| 2 |
(1)(x1-x2)2
=
| x | 2 1 |
| x | 2 2 |
=
| x | 2 1 |
| x | 2 2 |
=(x1+x2)2-4x1x2
=(-2)2-4×(-
| 3 |
| 2 |
=4+6
=10.
(2)
| 2 |
| x1 |
| 2 |
| x2 |
=
| ||||
| x1x2 |
=
| ||||
| x1x2 |
=
2(
| ||||
| x1x2 |
=
2(
| ||||
| x1x2 |
=
2×(-2)2-4×(-
| ||
-
|
=-
| 28 |
| 3 |
(3)x12+x22
=
| x | 2 1 |
| x | 2 2 |
=(x1+x2)2-2x1x2
=(-2)2-2×(-
| 3 |
| 2 |
=7.
点评:本题考查了根与系数的关系与配方法的应用,将各式转化为两根之积与两根之和的形式是解题的关键.
练习册系列答案
相关题目
设x1、x2是方程2x2-6x+3=0的两个根,那么x12+x22的值为( )
| A、3 | B、-3 | C、6 | D、-6 |
设x1、x2是方程
x2-x-3=0的两个根,则有( )
| 1 |
| 3 |
| A、x1+x2=-1 |
| B、x1x2=-9 |
| C、x1x2=1 |
| D、x1x2=9 |
设x1、x2是方程3x2-7x-6=0的两根,则(x1-3)•(x2-3)=( )
| A、6 | B、4 | C、2 | D、0 |