题目内容

(2014•舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为( )

A.2cm B.2cm C.4cm D.4cm

 

B

【解析】

试题分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.

【解析】
∵点E,F分别是CD和AB的中点,

∴EF⊥AB,

∴EF∥BC,

∴EG是△DCH的中位线,

∴DG=HG,

由折叠的性质可得:∠AGH=∠ABH=90°,

∴∠AGH=∠AGD=90°,

在△AGH和△AGD中,

∴△ADG≌△AHG(SAS),

∴AD=AH,∠DAG=∠HAG,

由折叠的性质可得:∠BAH=∠HAG,

∴∠BAH=∠HAG=∠DAG=∠BAD=30°,

在Rt△ABH中,AH=AD=4,∠BAH=30°,

∴HB=2,AB=2

∴CD=AB=2

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网