题目内容
如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=MN.
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,直接写出△ABC外接圆的圆心坐标.
小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:
(1)求A,C之间的距离.(参考数据≈4.6)
(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)
在Rt△ABC中,∠C=90°.
若∠B=60°,BC=,则∠A=__________,AC=_________,AB=_________;
若∠A=45°,AB=2,则∠B=_________,AC=_________,BC=_________.
已知a,b,c分别是△ABC的三边,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有两个相等的实数根,试判断△ABC的形状,并说明理由.
如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.
(1)求证:PM=PN;
(2)求∠MPN的度数.
如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.
正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为( )
A.45° B.55° C.60° D.75°
如图,由长度为1个单位的若干小正方形组成的网格图中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)三角形ABC的面积为
(3)以AC为边作与△ABC全等的三角形(只要作出一个符合条件的三角形即可);
(4)在直线l上找一点P,使PB+PC的长最短.