题目内容

精英家教网如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆相交于点D,写出图中所有与∠DCB相等的角
 
分析:由圆内接四边形的外角等于它的内对角,可得∠DCB=∠EAD,由AD是△ABC外角∠EAC的平分线,可证∠BAC=∠CAD=
1
2
∠BAD,又∠EAD+∠BAD=180°,即可证∠BAC=∠CAD=∠BCD=∠EAD.
解答:解:∵A、B、C、D四点共圆,
∴∠DCB=∠EAD,
∵AD是△ABC外角∠EAC的平分线,
∴∠BAC=∠CAD=
1
2
∠BAD,
∵∠EAD+∠BAD=180°,
∴∠BAC=∠CAD=∠BCD=∠EAD.
点评:本题利用了圆周角定理,角的平分线的性质,圆内接四边形的性质,邻补角的概念求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网