题目内容
如图(2),在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为 。
如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG= 70º,求∠EGD的度数.
如图,已知AB∥CF,点E为DF的中点,若AB=9 cm,CF=5 cm,则BD=____cm.
如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?
请你作出判断,在下列横线上填写“是”或“否”:①_____;②_____.
已知,若用“SAS”证明,还需要添加条件( )
A. ∠D=∠C B. OA=OB C. AD=BC D. AC=BD
某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目的得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项的得分分别按10%、40%、20%、30%折算计入总分,根据猜测,求出甲的总分.
(2)本次大赛组委会最后决定,总分在80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项的得分折算后的分数和是20分,甲能否获得这次比赛的一等奖?
在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )
A. 平均数 B. 众数 C. 中位数 D. 方差
二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过( )
A. 第一、二、三象限 B. 第一、二、四象限
C. 第二、三、四象限 D. 第一、三、四象限