题目内容
将图a绕中心按顺时针方向旋转60°后可得到的图形是( )
A
如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有 条对角线.
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证 ( )
(A)a2-b2=(a+b)(a-b)
(B)(a-b)2=a2-2ab+b2
(C)(a+b)2=a2+2ab+b2
(D)(a+2b)(a-b)=a2+ab-2b2
已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)
-8的立方根是( )
A.-2 B.±2 C.2 D.
已知ABC∽A1B1C1,AB:A1B1=2:3,若SABC=12,
则= ;
解不等式组:.
直角三角形的两直角边是6和8,则它的外接圆的直径为 .
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)(4分)求每台A型电脑和B型电脑的销售利润;
(2)(4分)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)(4分)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.