题目内容

精英家教网如图,直线y=-
4
3
x+4与y轴交于点A,与直线y=
4
5
x+
4
5
交于点B,且直线y=
4
5
x+
4
5
与x轴交于点C,则△ABC的面积为
 
分析:根据题意分别求出A,B,C,D的坐标,再用S△ACD-S△BCD即可求出△ABC的面积.
解答:精英家教网解:因为直线y=-
4
3
x+4中,b=4,故A点坐标为(0,4);
令-
4
3
x+4=0,则x=3,故D点坐标为(3,0).
4
5
x+
4
5
=0,则,x=-1,故C点坐标为(-1,0),
因为B点为直线y=-
4
3
x+4直线y=
4
5
x+
4
5
的交点,
故可列出方程组
y=-
4
3
x+4
y=
4
5
x+
4
5
,解得
x=
3
2
y=2
,故B点坐标为(
3
2
,2),
故S△ABC=S△ACD-S△BCD=
1
2
CD•AO-
1
2
CD•BE=
1
2
×4×4-
1
2
×4×2=4.
点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网