题目内容
在平面直角坐标系中,⊙A的半径为2,点A的坐标为(5,12),P(m,n)是⊙A上的一个动点,则
的最大值为 .
连结OA并延长交⊙A与点P,因为圆心A的坐标为(5,12),点P的坐标为(m,n),所以
,
,所以
为点P与圆点的距离的平方,所以当点运动到线段OA的延长线上时,即P处,点P离圆点最远,即
有最大值,此时OP=OA+AP=13+2=15,所以
的最大值为225.
【解析】
由于圆心A的坐标为(5,12),点P的坐标为(m,n),利用勾股定理可计算出
,
,这样把
理解为点P与圆点的距离的平方,利用图形可得到当点运动到线段OA的延长线上时,点P离圆点最远,即
有最大值,然后求出此时OP的长即可.
考点:点与圆的位置关系;坐标与图形性质;勾股定理.
练习册系列答案
相关题目