题目内容
2
2
.分析:由△ABC中,∠B=60°,AB=AC=4,可证得△ABC是等边三角形,又由PD⊥BC,CD=1,易求得CQ的长与∠AQP=∠P=∠CQD=30°,继而可得PA=AQ=AC-CQ.
解答:解:∵△ABC中,∠B=60°,AB=AC=4,
∴△ABC是等边三角形,
∴∠C=∠BAC=∠B=60°,
∵PD⊥BC,
∴∠CQD=∠AQP=90°-∠C=30°,
∴∠P=∠BAC-∠AQP=60°-30°=30°,
∴∠P=∠AQP,
∴PA=QA,
在Rt△CDQ中,CQ=2CD=2×1=2,
∴QA=AC-CQ=4-2=2,
∴PA=2.
故答案为:2.
∴△ABC是等边三角形,
∴∠C=∠BAC=∠B=60°,
∵PD⊥BC,
∴∠CQD=∠AQP=90°-∠C=30°,
∴∠P=∠BAC-∠AQP=60°-30°=30°,
∴∠P=∠AQP,
∴PA=QA,
在Rt△CDQ中,CQ=2CD=2×1=2,
∴QA=AC-CQ=4-2=2,
∴PA=2.
故答案为:2.
点评:此题考查了等边三角形的判定与性质、等腰三角形的判定与性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目