ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÁвÄÁÏ£¬ÄãÄܵõ½Ê²Ã´½áÂÛ£¬²¢ÀûÓã¨1£©ÖеĽáÂÛ·Ö½âÒòʽ.
£¨1£©ÐÎÈçx2+(p+q)x+pqÐ͵Ķþ´ÎÈýÏîʽ£¬ÓÐÒÔÏÂÌØµã£º¢Ù¶þ´ÎÏîϵÊýÊÇ1£»¢Ú³£ÊýÏîÊÇÁ½¸öÊýÖ®»ý£»¢ÛÒ»´ÎÏîϵÊýÊdz£ÊýÏîµÄÁ½¸öÒòÊýÖ®ºÍ£¬°ÑÕâ¸ö¶þ´ÎÈýÏîʽ½øÐзֽâÒòʽ£¬¿ÉÒÔÕâÑùÀ´½â£ºx2+(p+q)x+pq£½x2+px+qx+pq£½(x2+px)+(qx+pq)
£½x(x+p)+q(x+p)
£½(x+p)(x+q).
Òò´Ë£¬¿ÉÒÔµÃx2+(p+q)x+pq£½_________.
ÀûÓÃÉÏÃæµÄ½áÂÛ£¬¿ÉÒÔÖ±½Ó½«Ä³Ð©¶þ´ÎÏîϵÊýΪ1µÄ¶þ´ÎÈýÏîʽ·Ö½âÒòʽ.
£¨2£©ÀûÓã¨1£©ÖеĽáÂÛ£¬·Ö½âÒòʽ£º
¢Ùm2+7m£18£»¢Úx2£2x£15£»¢Ûx2y2£7xy+10.
£¨1£©(x+p) (x+q).£¨2£©¢Ù(m£2) (m+9£©.¢Ú(x+3) (x£5).¢Û(xy£2) (xy£5).
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿