题目内容

如图,已知?ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.
(1)求证:△ADG≌△FDM.
(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.

证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠BAF=∠DFA,
∵AF平分∠BAD,
∴∠DAF=∠DFA,
∴AD=FD,
∵DE⊥BC,DH⊥AB,
∴∠ADG=∠FDM=90°,
在△ADG和△FDM中,

∴△ADG≌△FDM(ASA).

(2)AB=DG+EC.
证明:延长GD至点N,使DN=CE,连接AN,
∵DE⊥BC,AD∥BC,
∴∠ADN=∠DEC=90°,
在△ADN和△DEC中,

∴△ADN≌△DEC(SAS),
∴AN=CD=DG+DN=DG+EC,
∵四边形ABCD是平行四边形,
∴AB=CD,
∴AB=DG+EC.
分析:(1)由?ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,可证得DA=DF,然后由ASA证得:△ADG≌△FDM.
(2)延长GD至点N,使DN=CE,连结AN先证明△ADN≌△DEC,再证AN=NG=CD=AB
点评:此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网