题目内容
(本小题满分10分)
如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上. ![]()
(1) 求证:△ABD∽△CAE;
(2) 如果AC =BD,AD =
BD,设BD = a,求BC的长.
(1)△ABD∽△CAE,证明略。
(2)
a
解析(1) ∵ BD∥AC,点B,A,E在同一条直线上, ∴ÐDBA = ÐCAE,
又∵
,
∴ △ABD∽△CAE. --- 4分
(2) ∵AB =" 3AC" = 3BD,AD =2
BD ,
(第22题)
∴ AD2 + BD2 =" 8BD2" + BD2 =" 9BD2" =AB2,
∴ÐD ="90°, "
由(1)得 ÐE =ÐD =" 90°, "
∵ AE=
BD , EC =
AD =
BD , AB =" 3BD" ,
∴在Rt△BCE中,BC2 =" (AB" + AE )2 + EC2
=" (3BD" +
BD )2 + (
BD)2 =
BD2 =" 12a2" ,
∴ BC =
a . --- 6分
练习册系列答案
相关题目