题目内容

(本小题满分10分)
如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上.

(1) 求证:△ABD∽△CAE;
(2) 如果AC =BD,AD =BD,设BD = a,求BC的长.


(1)△ABD∽△CAE,证明略。
(2) a

解析(1) ∵ BD∥AC,点B,A,E在同一条直线上,  ∴ÐDBA = ÐCAE,
又∵,
∴ △ABD∽△CAE.       --- 4分
(2)  ∵AB =" 3AC" = 3BD,AD =2BD ,
(第22题)
∴ AD2 + BD2 =" 8BD2" + BD2 =" 9BD2" =AB2,              
∴ÐD ="90°,             "
由(1)得 ÐE =ÐD =" 90°, "
∵ AE=BD , EC =AD = BD , AB =" 3BD" ,
∴在Rt△BCE中,BC2 =" (AB" + AE )2 + EC2
=" (3BD" +BD )2 + (BD)2 = BD2 =" 12a2" ,
∴ BC =a .                                       --- 6分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网