题目内容

(2009•三明质检)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是( )

A.(5,4)
B.(4,5)
C.(5,3)
D.(3,5)
【答案】分析:因为点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,所以OB=2,OC=8,BC=6,连接AD,则AD⊥OD,过点A作AE⊥OC于E,则ODAE是矩形,由垂径定理可知BE=EC=3,所以OE=AD=5,再连接AB,则AB=AD=5,利用勾股定理可求出AE=4,从而就求出了A的坐标.
解答:解:连接AD,AB,AC,再过点A作AE⊥OC于E,则ODAE是矩形,
∵点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,
∴OB=2,OC=8,BC=6,
∵⊙A与y轴相切于点D,
∴AD⊥OD,
∵由垂径定理可知:BE=EC=3,
∴OE=AD=5,
∴AB=AD=5,
利用勾股定理知AE=4,
∴A(5,4).
故选A.
点评:本题需综合利用垂径定理、勾股定理来解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网