题目内容
如图,在Rt△ABC中,∠C=90°,点D是BC边上的一点,CD=6,cos∠ADC=,tanB=,求BD的长.
将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为 .
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( )
A.30° B.40° C.45° D.60°
已知:如图1,在四边形ABCD中,AB∥CD,∠B=∠D.
(1)求证:四边形ABCD是平行四边形;
(2)过点A作AE⊥BC于E,AF⊥CD于F,如图2,若CF=2,CE=5,四边形ABCD的周长为28.求EF的长度.
在平面直角坐标系中,O为坐标原点,点B在x轴的正半轴上,且OB=2,点M(m,0),N(0,n),将点B向上平移2个单位长度后得到点B1.若∠MB1N=90°,且mn=3,则B1M= .
x2+y=3,当-1≤x≤2时,y的最小值是( )
A.-1 B.2 C. D.3
一个不透明的口袋中有3个完全相同的小球,分别标有数字1,2,3,随机摸出一个小球然后放回,再随机摸出一个小球,求两次摸出的小球数字之积等于3的概率.
对于解不等式,正确的结果是( )
A.x< B.x> C.x>-1 D.x<-1