题目内容

(本小题满分9分)
如图,已知二次函数的图象与x轴相交于点A、C,与y轴交于点B,A(,0),且△AOB~△BOC。

(1)求C点坐标、∠ABC的度数及二次函数的关系式;
(2)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由

(1)y=-
(2)m的值为或-1.解析:
解:(1)由题意,得B(0,3)
∵△AOB∽△BOC,
∴∠OAB=∠OBC,.
.
∴OC=4, ∴C(4,0).
∵∠OAB+∠OBA=90°,
∴∠OBC+∠OBA=90°.
∴∠ABC=90°.
∵y=图象经过点A(-,0),C(4,0),

∴y=-.
(2)①如图1,当CP=CO时,点P在以BM为直径的圆上,因为BM为圆的直径.

∴∠BPM=90°,  ∴PM∥AB
∴△CPM∽△CBA.
,得CM=5.
∴m=-1.
②如图2,当PC=PO时,点P在OC垂直平分线上,得PC=2.5.
由△CPM∽△CBA,得CM=.
∴m=4-.
③当OC=OP时,M点不在线段AC上.
综上所述,m的值为或-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网