题目内容
如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.
(1)求证:△ABE≌△CAF;
(2)如图①过A的直线与斜边BC不相交时,试探索EF、BE、CF三条线段的关系;
(3)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求FE长.

(1)求证:△ABE≌△CAF;
(2)如图①过A的直线与斜边BC不相交时,试探索EF、BE、CF三条线段的关系;
(3)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求FE长.
分析:(1)由条件可以得出∠BAE=∠ACF,∠AEB=∠CFA,就可以得出△ABE≌△CAF;
(2)由△ABE≌△CAF就可以得出EF=BE+CF;
(3)通过证明三角形△ABE≌△CAF就可以得出结论.
(2)由△ABE≌△CAF就可以得出EF=BE+CF;
(3)通过证明三角形△ABE≌△CAF就可以得出结论.
解答:(1)证明:∵∠BAC=90°,
∴∠BAE+∠CAF=90°.
∵BE⊥EF,CF⊥EF,
∴∠AEB=∠CFA=90°,
∴∠FAC+∠ACF=90°,
∴∠BAE=∠ACF.
在△ABE和△CAF中
∴△ABE≌△CAF(AAS);
(2)EF=BE=CF.理由:
证明:∵△ABE≌△CAF,
∴AE=CF,BE=AF.
∵EF=AE+AF,
∴EF=CF+BE;
(3)解:如图2,∵∠BAC=90°,
∴∠BAF+∠CAF=90°.
∵BE⊥EF,CF⊥EF,
∴∠AEB=∠CFA=90°,
∴∠FAC+∠ACF=90°,
∴∠BAE=∠ACF.
在△ABE和△CAF中,
,
∴△ABE≌△CAF(AAS),
∴BE=AF,AE=CF.
∵EF=AF-AE,
∴EF=BE-CF=10-3=7.
答:EF的长为7.
∴∠BAE+∠CAF=90°.
∵BE⊥EF,CF⊥EF,
∴∠AEB=∠CFA=90°,
∴∠FAC+∠ACF=90°,
∴∠BAE=∠ACF.
在△ABE和△CAF中
|
∴△ABE≌△CAF(AAS);
(2)EF=BE=CF.理由:
证明:∵△ABE≌△CAF,
∴AE=CF,BE=AF.
∵EF=AE+AF,
∴EF=CF+BE;
(3)解:如图2,∵∠BAC=90°,
∴∠BAF+∠CAF=90°.
∵BE⊥EF,CF⊥EF,
∴∠AEB=∠CFA=90°,
∴∠FAC+∠ACF=90°,
∴∠BAE=∠ACF.
在△ABE和△CAF中,
|
∴△ABE≌△CAF(AAS),
∴BE=AF,AE=CF.
∵EF=AF-AE,
∴EF=BE-CF=10-3=7.
答:EF的长为7.
点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形的全等是关键.
练习册系列答案
相关题目