题目内容
下列几何体,主视图和俯视图都为矩形的是( )
A. B. C. D.
如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
(9分)如图,一次函数y=kx+b与反比例函数的图象交于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b≥的解集;
(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积.
在一张由复印机复印出来的图片上,一个多边形的图案的一条边由原来的2cm变成4cm,那么这个印出来的多边形图案的面积是原来的( )
A. 2倍 B. 3倍 C. 4倍 D. 8倍
三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为___cm.
如图,所给三视图的几何体是( )
A. 球 B. 圆柱 C. 圆锥 D. 三棱锥
如图是由4个大小相同的正方体搭成的几何体,其俯视图是( )
写出一个主视图、左视图、俯视图都相同的几何体: .
如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)
【答案】钢缆AC的长度为1 000米.
【解析】试题分析:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,分别求出AE、CE,利用勾股定理求解AC即可.
试题解析:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,
则△AFB、△BDC、△AEC都是直角三角形,四边形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′-B′F=BB′-AA′=310-110=200,
CD=CC′-C′D=CC′-BB′=710-310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC=(米).
答:钢缆AC的长度是1000米.
考点:解直角三角形的应用-坡度坡角问题.
【题型】解答题【结束】24
如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图②,连接OD交AC于点G,若,求sinE的值.