题目内容
如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为
- A.4
- B.2
- C.1
- D.

C
分析:连OA,OB,设OR交BC于M,OP交AB于N,由四边形ABCD为正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四边形ORQP为正方形,得∠NOM=90°,所以∠MOB=∠NOA,则△OBM≌△OAN,即可得到S四边形MONB=S△AOB=
×2×2=1.
解答:
解:连OA,OB,设OR交BC于M,OP交AB于N,如图,
∵四边形ABCD为正方形,
∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,
而四边形ORQP为正方形,
∴∠NOM=90°,
∴∠MOB=∠NOA,
∴△OBM≌△OAN,
∴S四边形MONB=S△AOB=
×2×2=1,
即它们重叠部分的面积为1.
故选C.
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形的性质.
分析:连OA,OB,设OR交BC于M,OP交AB于N,由四边形ABCD为正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四边形ORQP为正方形,得∠NOM=90°,所以∠MOB=∠NOA,则△OBM≌△OAN,即可得到S四边形MONB=S△AOB=
解答:
∵四边形ABCD为正方形,
∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,
而四边形ORQP为正方形,
∴∠NOM=90°,
∴∠MOB=∠NOA,
∴△OBM≌△OAN,
∴S四边形MONB=S△AOB=
即它们重叠部分的面积为1.
故选C.
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形的性质.
练习册系列答案
相关题目