题目内容
如图,在平行四边形ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则平行四边形ABCD的周长为( )

A.4+2
| B.12+6
| ||||||
C.2+2
| D.2+2
|
∵平行四边形ABCD
∴AD∥BC,
∵AE⊥BC于E,
∵AE=EB=EC=a,
∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=
a,BC=BE+CE=2a,
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
),
∵a是一元二次方程x2+2x-3=0的根,解此方程得x=-3或x=1,显然x=-3,不合题意,x=1,
∴x=a=1,
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
)=2(2+
)=4+2
故选A.
∴AD∥BC,
∵AE⊥BC于E,
∵AE=EB=EC=a,
∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=
| 2 |
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
| 2 |
∵a是一元二次方程x2+2x-3=0的根,解此方程得x=-3或x=1,显然x=-3,不合题意,x=1,
∴x=a=1,
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
| 2 |
| 2 |
| 2 |
故选A.
练习册系列答案
相关题目