题目内容
【题目】如图,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=
,点E为AD的中点,线段BA绕点B顺时针旋转到BC(旋转角小于180°),使BC∥AD.连接DC,BE.
(1)则四边形BCDE是________,并证明你的结论;
(2)求线段AB旋转过程中扫过的面积.
![]()
【答案】(1)菱形;(2)![]()
【解析】试题分析:(1)先证四边形BCDE是平行四边形,即可得到结论;
(2)求出∠ABC的度数,根据扇形面积公式计算即可.
试题解析:解:(1)菱形.证明如下:
∵sin∠ADB=
,∴∠ADB=30°,
在Rt△ABD中,∠ABD=90°,AB=1,∴AD=2。
又点E为AD的中点,∴BE=DE= AB=1,由旋转知BC=1,∴BC=DE,又BC∥AD,∴四边形BCDE是平行四边形,又BE=DE,∴平行四边形BCDE是菱形.
(2)∵BC∥AD,∠ADB=30°,∴∠DBC=30°,∴∠ABC=120°,∴线段AB旋转过程中扫过的面积为
=
.
【题目】为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?
(2)甲、乙两班各有多少名同学?
【题目】陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的规定如下表:
数量范围(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500部分 | 2500以上部分 |
价格补贴 | 零售价的95% | 零售价的85% | 零售价的75% | 零售价的70% |
(1)如果他批发700千克苹果,则他在A、B两家批发分别需要多少元?
(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B两家批发所需的费用;
(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:
问题1:能否举例说明A店买的多反而便宜?
问题2:B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;
注:不同的单价,补贴价格也不同;只需提前算好即可填下表:
数量范围(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
价格补贴 | 0元 | 300 |