题目内容


如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.

(1)求证:△ABC为等腰三角形;

(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.


(1)证明:如图1,作∠BAP=∠DAE=β,AP交BD于P,

设∠CBD=α,∠CAD=β,

∵∠ADB=∠CAD+∠ABD,∠APE=∠BAP+∠ABD,

∴∠APE=∠ADE,AP=AD.

∵AC⊥BD

∴∠PAE=∠DAE=β,

∴∠PAD=2β,∠BAD=3β.

∵∠BAD=3∠CBD,

∴3β=3α,β=α.

∵AC⊥BD,

∴∠ACB=90°﹣∠CBE=90°﹣α=90°﹣β.

∵∠ABC=180°﹣∠BAC﹣∠ACB=90°﹣β,

∴∠ACB=∠ABC,

∴△ABC为等腰三角形;

(2)2MH=FM+CD.

证明:如图2,

由(1)知AP=AD,AB=AC,∠BAP=∠CAD=β,

∴△ABP∽△ACD,

∴∠ABE=∠ACD.

∵AC⊥BD,

∴∠GDN=90°﹣β,

∵GN=GD,

∴∠GND=∠GDN=90°﹣β,

∴∠NGD=180°﹣∠GND﹣∠GDN=2β.

∴∠AGF=∠NGD=2β.

∴∠AFG=∠BAD﹣∠AGF=3β﹣2β=β.

∵FN平分∠BFM,

∴∠NFM=∠AFG=β,

∴FM∥AE,

∴∠FMN=90°.

∵H为BF的中点,

∴BF=2MH.

在FB上截取FR=FM,连接RM,

∴∠FRM=∠FMR=90°﹣β.

∵∠ABC=90°﹣β,

∴∠FRM=∠ABC,

∴RM∥BC,

∴∠CBD=∠RMB.

∵∠CAD=∠CBD=β,

∴∠RMB=∠CAD.

∵∠RBM=∠ACD,

∴△RMB∽△DAC,

∴BR=CD.

∵BR=BF﹣FR,

∴FB﹣FM=BR=CD,

FB=FM+CD.

∴2MH=FM+CD.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网