题目内容
(8分)图3.1、图3.2、图3.3均是单位为1的方格图.
(1)请把方格图3.1中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线,在图3.2中画出拼成正方形的草图)
(2)所拼成正方形的边长为多少?周长为多少?
(3)利用这个事实,在图3.3的数轴上画出表示
的点A.(要求保留画图痕迹)
(4)在图3.3的数轴上画出表示
的点B.(要求保留画图痕迹)
![]()
略
解析:(1)如图1、图2 (2)边长为
,周长为4
(3)(4)如图3
![]()
(本小题满分5分)已知菱形纸片ABCD的边长为
,∠A=60°,E为
边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点
处,过点
作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点
处,
与
H分别交
与
于点M、N.若点
在△
EF的内部或边上,此时我们称四边形
(即图中阴影部分)为“重叠四边形”.
![]()
![]()
图1 图2 备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形
的面积;
(2)实验探究:设AE的长为
,若重叠四边形
存在.试用含
的代数式表示重叠四边形
的面积,并写出
的取值范围(直接写出结果,备用图供实验,探究使用).
(本小题满分5分)已知菱形纸片ABCD的边长为
,∠A=60°,E为
边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点
处,过点
作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点
处,
与
H分别交
与
于点M、N.若点
在△
EF的内部或边上,此时我们称四边形
(即图中阴影部分)为“重叠四边形”.![]()
![]()
![]()
图1 图2 备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形
(2)实验探究:设AE的长为