ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÇóÖ¤£º¡ÑAÓëBCÏàÇУ»
£¨3£©ÔÚx¸º°ëÖáÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹MCÓë¡ÑAÏàÇУ¬Èô´æÔÚ£¬ÇóµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©Ïß¶ÎADÓëyÖá½»ÓÚµãE£¬¹ýµãEµÄÈÎÒâÒ»Ö±Ïß½»¡ÑAÓÚP¡¢QÁ½µã£¬ÎÊÊÇ·ñ´æÔÚÒ»¸ö³£ÊýK£¬Ê¼ÖÕÂú×ãPE•QE=K£¬Èç¹û´æÔÚ£¬ÇëÇó³öKµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÇóÖ±ÏßBCµÄ½âÎöʽ£¬½«Dµãºá×ø±ê´úÈëÖ±ÏßBC½âÎöʽÇóaµÄÖµ£»
£¨2£©·Ö±ðÇóAD£¬BDµÄ³¤£¬Ö¤Ã÷AD2+BD2=AB2£¬ÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжϡÏADB=90¡ã¼´¿É£»
£¨3£©´æÔÚ£®ÉèM£¨m£¬0£©£¬Á¬½ÓMC£¬µ±MCÓë¡ÑMÏàÇÐʱ£¬ÀûÓüÆËã¡÷OCMµÄÃæ»ýµÄ·½·¨£¬Áз½³ÌÇómµÄÖµ£»
£¨4£©´æÔÚ£®ÑÓ³¤DA½»¡ÑAÓÚGµã£¬ÀûÓÃÏཻÏÒ¶¨ÀíÇó³£ÊýK£®
£¨2£©·Ö±ðÇóAD£¬BDµÄ³¤£¬Ö¤Ã÷AD2+BD2=AB2£¬ÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжϡÏADB=90¡ã¼´¿É£»
£¨3£©´æÔÚ£®ÉèM£¨m£¬0£©£¬Á¬½ÓMC£¬µ±MCÓë¡ÑMÏàÇÐʱ£¬ÀûÓüÆËã¡÷OCMµÄÃæ»ýµÄ·½·¨£¬Áз½³ÌÇómµÄÖµ£»
£¨4£©´æÔÚ£®ÑÓ³¤DA½»¡ÑAÓÚGµã£¬ÀûÓÃÏཻÏÒ¶¨ÀíÇó³£ÊýK£®
½â´ð£º½â£º£¨1£©¡ßB£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
½«D£¨1£¬a£©´úÈ룬µÃa=-1+3=2£»
£¨2£©¡ßAD2=£¨1+1£©2+22=8£¬BD2=£¨3-1£©2+22=8£¬AB2=£¨1+3£©2=16£¬
¡àAD2+BD2=AB2£¬
¡à¡ÏADB=90¡ã£¬¼´£º¡ÑAÓëBCÏàÇУ»
£¨3£©´æÔÚ£®
ÉèM£¨m£¬0£©£¬Á¬½ÓMC£¬¹ýAµã×÷AN¡ÍCM£¬´¹×ãΪN£¬
ÔòMC=
£¬ÓÉAN¡ÁCM=AM¡ÁCO£¬µÃAN=
£¬
µ±MCÓë¡ÑMÏàÇÐʱ£¬AN=AD=2
£¬¼´
=2
£¬
½âµÃm=-21»ò3£¨ÉáÈ¥ÕýÖµ£©£¬¼´M£¨-21£¬0£©£»
£¨4£©´æÔÚ£®
ÑÓ³¤DA½»¡ÑAÓÚGµã£¬ÓÉA¡¢DÁ½µã×ø±ê¿ÉÖª£¬Ö±ÏßAD£ºy=x+1£¬
¡àE£¨0£¬1£©£¬
AE=ED=
£¬AG=2
£¬
ÓÉÏཻÏÒ¶¨Àí£¬µÃPE•QE=ED•EG=
¡Á3
=6£¬¼´K=6£®
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
½«D£¨1£¬a£©´úÈ룬µÃa=-1+3=2£»
£¨2£©¡ßAD2=£¨1+1£©2+22=8£¬BD2=£¨3-1£©2+22=8£¬AB2=£¨1+3£©2=16£¬
¡àAD2+BD2=AB2£¬
¡à¡ÏADB=90¡ã£¬¼´£º¡ÑAÓëBCÏàÇУ»
£¨3£©´æÔÚ£®
ÉèM£¨m£¬0£©£¬Á¬½ÓMC£¬¹ýAµã×÷AN¡ÍCM£¬´¹×ãΪN£¬
ÔòMC=
| m2+9 |
| 3(-1-m) | ||
|
µ±MCÓë¡ÑMÏàÇÐʱ£¬AN=AD=2
| 2 |
| 3(-1-m) | ||
|
| 2 |
½âµÃm=-21»ò3£¨ÉáÈ¥ÕýÖµ£©£¬¼´M£¨-21£¬0£©£»
£¨4£©´æÔÚ£®
ÑÓ³¤DA½»¡ÑAÓÚGµã£¬ÓÉA¡¢DÁ½µã×ø±ê¿ÉÖª£¬Ö±ÏßAD£ºy=x+1£¬
¡àE£¨0£¬1£©£¬
AE=ED=
| 2 |
| 2 |
ÓÉÏཻÏÒ¶¨Àí£¬µÃPE•QE=ED•EG=
| 2 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÔËÓ㮹ؼüÊǸù¾ÝÒÑÖªµãÇóÖ±Ïß½âÎöʽ£¬ÔËÓõãµÄ×ø±êÅжÏÖ±ÏßÓëÔ²ÏàÇУ¬ÔËÓÃÇÐÏßµÄÐÔÖÊÇómµÄÖµ£¬ÔËÓÃÏཻÏÒ¶¨ÀíÇó³£ÊýK£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿